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Eliminating Columns in the Simplex Method for Linear Programming

Yinyu Ye *

Stanford University, Stanford, CA

November 1987

Abstract

We propose a column-eliminating and a lower bound updating technique for the

simplex method for linear programming. A pricing criterion is developed for checking

whether or not a dual hyperplane corresponding to a column intersects a simplex contain-

ing all of the optimal dual feasible solutions. If the dual hyperplane has no intersection

with this simplex, we can eliminate the corresponding column from the constraints. As

the simplex method iterates, the working constraint matrix eventually eliminates all

columns except those that are in at least one optimal basis. . r P

Key words: Linear Programming, Simplex Method, Ellipsoid Method; Karmarkar Methodi.

Column Elimination, Lower Bound Updating.
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1. Introduction

Techniques for solving linear programming (LP) have been intensely studied for

four decades. The birth of linear programming is usually identified with the concurrent

development of the simplex method in 1947 by George Dantzig. It says much for the

algorithm's originator that the simplex method still remains the major algorithm used

in optimization systems, although recently interior methods are serious competitors.

Two more recent approaches to solving linear programs are the ellipsoid method

(Khachiyan [71) and the projective algorithm (Karmarkar [61). Recently, Todd [8] and I

[9] found that the ellipsoid method and Karmarkar's algorithm are closely related. Both of

these methods generate a shrinking dual ellipsoid containing the optimal dual solutions.

Therefore, some columns may be eliminated from the constraints if their corresponding

dual hyperplanes have no intersection to the containing ellipsoid.

When I talked with George Dantzig regarding this eliminating issue, he predicted

that a similar result could be obtained for the simplex method. Therefore, we started a

series of research meetings along this direction. The result is this paper on a criterion for

eliminating columns in each iteration of the simplex method. In this report, we introduce

the notion of a simplex St that contains all optimal feasible dual solutions. When the

primal is in canonical form and feasible, the simplex in the dual space is the negative

orthant and a half space whose boundary hyperplane is parallel to the dual objective. At

the next iteration t + 1, a scparating dual hyperplane deletes part of the simplex S' and

forms a new containing simplex, S'+ l .Thus, we developed a strong column-eliminating

theorem: if a dual hyperplane corresponding to column j has no intersection with the

containing simplex S', then column j in the primal constraint matrix cannot be in an

optimal basis and, therefore can be eliminated from further computation. As the simplex

method iterates, the working constraint matrix ultimately reduces to only those columns

that are in at least one optimal basis.

As Goldfarb and Hao [5] pointed out, the theorem derived in this paper is similar to

the one proposed by Cheng [1, 2]. In particular, Corollary 1 in our paper is identical to

Theorem 1 on identifying the permanent nonbasic variables for the sinhllx metlhod in



Cheng [1]. A complete literature on identifying permanent nonbasic and basic variables

can be found in Cheng [2]. However, all existing techniques need to approximate the

optimal objective value, and we develop the theoretical basis for a lower bound updating

technique. Most existing techniques need the assumption of nondegeneracy, and we relax

this assumption after initially assuming it. Moreover, the geometrical interpretation of

the containing simplex in our theorem is new and this interpretation may lead to a

pricing rule for selecting the incoming column as the one that most reduces the volume

of the containing simplex of iteration t + 1 relative to that of iteration t. We also give

a simple numerical example to show how this column-eliminating scheme performs in

practice.

2. The Dual Containing Simplex

We assume for the moment:

- Assumptions

1. an initial basic feasible solution is known;

2. the minimal objective value is known in advance;

3. every vertex of the feasible polytope is nondegenerate.

The last two assumptions will be dropped later. Without losing generality, we can

describe the primal LP problem in terms of the canonical form at each iteration t of the

-simplex method.

LP Canonical Form

PLP minimize z = cx

subject to xEX={xER":Ax=b and x>O}

where -A E Rmx, e is the vector of all one's, b > 0, and

A=(I, D) and Z=(O, ED).

The initial basic feasible solution is x0  - O)T and the initial objective value is

Zx° = 0. We also denote by z* < 0 the given minimal objective value. The dual of the

above linear program PLP is

2



DLP maximize yb

subject to y E Y = {y E Rm : yA < Z}

where the row vector y E Rm . For all feasible x E X and y E Y we have by the weak

duality theorem (Dantzig [3])

yb < z* < z = Tx. (1)

The dual solution corresponding to the initial basic feasible solution is y0 = 0. If
Z > 0, then y0A < T is feasible and y0b = Ex0 = 0 and the solution x0 is optimal.

Otherwise y0 = 0 is an infeasible dual solution whose dual objective function shares the

same value as the primal objective value Tx° = 0. We also denote by H3 the hyperplane

H, = {y E R': ydj =T.},

and by H, the half space

H.= {yE R m :yj <},

where Jj is the jth column of A. If y0 = 0 is feasible for DLP, then both x0 and

y0 solve problems PLP and DLP. Othewise, we have at least one hyperplane, say Hk,

which separates 0 from Y. Obviously, the number of such separating hyperplanes are the

number of Zj's with negative sign.

Let

A = TX - z* = -z*. (2)

Then for all dual optimal feasible solutions y* of DLP,

y'<Z and yb> -A.

In particular, the first m basic columns of A state y* _< 0, so that

y*_0 and y*b>-A

define the simplex S t for iteration t:

S' = {y E R' : y <0 , yb > -A}.

Therefore, S' is a simplex containing all optimal dual feasible solutions y:

ye E S t . (3)

3
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3. The Column-Eliminating Theorem

If x* and y° are optimal solutions to PLP and DLP respectively, then complementary

slackness conditions hold:

(Tj - y'ii)x* = 0 for 1 < j< n. (4)

Hence, Z. - y*Ji > 0 implies that xr = 0, i.e., the jth column is not in any optimal basis

and hence can be eliminated from the problem. A sufficient condition that Ej - yzii > 0

for all dual feasible y° is that it be true for all y° E S', since S' contains all optimal dual

feasible solutions as well as other y. It suffices therefore to show that the hyperplane Hj

has no points in common with S t , or that St is contained in the interior of H,.
.

St C Int(Hf). (5)

However, St only has m + 1 vertices, namely

V- =0, V' = (-A/lb)Uj for 1 <i<m, (6)

where Ui is the ith unit vector. Therefore, S t C Int(H ) if and only if these vertices V'

a"-. are strictly in the interior of the half space H,-. Thus, we have

Theorem 1

If

Z, - yU, > 0 for y =V', i = (0,1, ... ,m), (7)

then the jth column of A is not in any optimal basis for PLP.

Proof. If (7) is true, then Z, - yaj > 0 for all y = E AiV' = St where A, _0, Z A, = 1.

Since all optimal dual feasible solutions y° E S',

Z) - y*j >0 = X =0.

Hence, the proof simply follows from the complementary slackness conditions discussed

above. Q.E.D.

4
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,* Furthermore, we can explicitly calculate the minimum of those m + 1 vlues in

Theorem 1. Letting aij be the ith component of column Jj, we derive

Corollary 1 (nondegenerate case)

If

F1 + Amin( O, min ( >0))>O, (8)l:!i<m b i

then the jth column of A is not in any optimal basis for PLP.

In order to apply Theorem 1, the values aij, bi, and Zj must be available from the

canonical form. In the revised simplex method only bi and the inverse of the basis in

either explicit or factorized form are available at the start of iteration t. It is necessary

- to compute Zj but it is too costly to compute aij for every column j except for the

selected incoming column j = s. However, at the end of the iteration t, the updated

values -,j, for the outgoing column j, of iteration t are readily at hand for iteration t + 1

and Theorem 1 may be applied to j,. For example, if (8) holds for updated aii,, b,, and

Sj., then column J, will never reenter the basis. This results in the following corollary.

Corollary 2 (nondegenerate case)

Let the sth column be the incoming column in the simplex method and a, be the

pivot. In either of the following two cases,

*1) all di, except d,,, are nonpositive;

2)
bi> ,_--- for all -ai, > 0, 1~r

the outgoing column jr can be eliminated.

Proof. Note that
-- updated ZA= z +-z- >0;

updated , A + > 0;

araupdated br b- > 0;

ars

5



updated bi= bi ba > 0, 7
are

-__ 1
updated ri,. - > 0;

ars

updated aj,= -a 8 , i 5 r.

aire

Substituting the above updated values into (8), the condition for eliminating column j.

becomes
-c8  + r + ) min(O, min( ag/ar /, ) > O. (9)

ea :r bi - bri/Ur. b,/Ure

Obviously, if ii, < 0 for all i k r, the second term is zero and the first term is

positive. Hence column jr can be dropped in case 1.

In case 2 of Corollary 2,

* min(O, min( _ / - C()
rr"ie/Ur ' br/-a- are minir,i.>0 (a-i  a

,N Thus, multiplying (9) by dr,

A +r r- > 0,
mini#,a,.>o _ _

or

m (bi br) A + br~e/dre
€ or ~min (= -i b) >A+b,°/o

i r,-E, >0 ais ars

which is equivalent to

-io> A for all iii, > i r. Q.E.D.

One should note that if two rows tie for pivot, the outgoing column can not be

eliminated since degeneracy occurs at iteration t + 1 (Dantzig [4]). We now remove the

nondegeneracy assumption, i.e., we allow that b > 0 instead of b > 0. In this case, St

may not be bounded. However, Theorem 1 is still valid if we define

! vi{(-A/b)Ui if b > 0
(-oo)Ui if b 2 = 0,

6
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and Corollary 1 can be modified as

Corollary 3 (degenerate or nondegenerate case)

If for some i, b, = 0 and aij < 0, then don't eliminate column j; otherwise if

j +iAmin( 0, min (-))> 0,
1<i<m,d>0 bi

then the jth column of A is not in any optimal basis for PLP.

Similarly, Corollary 2 can be modified as

F Corollary 4 (degenerate or nondegenerate case)

Let sth column be the incoming column in the simplex method and Us be the pivot.

* In either of the following two cases,

1) all ai,, except a,, are nonpositive;

2)

= > max (- =) for all li, >O0, ir
a8  IZ 8I ars

the outgoing column j can be eliminated.

.47
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"" 4. The Lower Bound Generating Technique

Until now we have assumed that the minimal objective value z* is known in advance.

Actually, all of the above theorems and corollaries are still valid if z* of (2) is replaced

by a lower bound z° for z*. At each step of the simplex method, we can update z' to a

possibly higher lower bound by using the following techniques.

Theorem 2

Let 5-i be the ith row of .4,

,fbImaxb En{6" 6-i 01, if {6: -67i>- 0 0;
-0c, otherwise

and

A = - max 6i.
I<i<k

Then for all feasible x E X,0
z -x > -A.

Proof. If A is finite, say A - 6k, then

- ak i- b UkA > 0,

i.e., bkUk is a feasible solution for DLP. Therefore, from (1),

.i-A = kb < 7.r = Z

for all feasible x E X. Q.E.D.

The following corollary resembles Theorem 2 by looking for a dual feasible solution

that has the form 6c.

Corollary 5

Let
'A- &T~' > 0}, i{6 - 6e 1'A > 1 0

,A= ( )mx{6:otherwise 0}

Then for all feasible x E X

z Tx > -A.

Thus, A can be calculated using a ratio test on A against T.

8



5. A Numerical Example

Suppose that the simplex tableau is given as follows (Dantzig [3] pp. 97):

Rows Col 1 Col 2 Col 3 Col 4 Col 5 RHS
Row 1 -3/2 7/8 0 -3/8 1 1/2

Row 2 1/2 -3/8 1 -1/8 0 3/2

S,. Cost 12 -1 0 2 0 0

Using (10), we obtain 61 = -4/7 and 62 = -o. Hence, A = 4/7 from Theorem 2

Now using Corollary 1, we have

Z, + Amin( 0, min (a-) )= 12 + (4/7)(-3) > 0
1<i<2 bi

and

c 4 + Amin( 0, min (ai4)) 2 + (4/7)(-3/4) >0... : <i<2 bi

Therefore, Columns 1 and 4 can be eliminated from the computational tableau.

Moreover, only the pivot U12 = 7/8 in the incoming column (Col 2) is positive. Using

Corollary 4, the outgoing column (Col 5) can be eliminated from the tableau as well.

Thus, we have only two columns (Col 2 and Col 3) left, which form the optimal basis.

6. Conclusion

We have proposed column-eliminating and lower bound updating techniques in the

sinplex method for linear programming. A pricing criterion is developed on checking

* the intersection between dual hyperplanes and the dual simplex containing all of the

optimal dual feasible solutions. Under this criterion, some columns may be identified

early as the optimal nonbasic columns; therefore they can be eliminated in the course

of the simplex method. As the simplex method iterates, the working constraint matrix

tultimately reduces to only those columns that are in some optimal basis

9
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